Foto del profilo [Picasa]

6 anni fa

skip to main |
skip to sidebar
#
no name

## martedì 8 dicembre 2009

## martedì 11 agosto 2009

###
Diogenes & Plato

## mercoledì 8 luglio 2009

###
Experiment* (the hidden computational capacity of your brain)

## mercoledì 10 giugno 2009

###
clouds

## mercoledì 20 maggio 2009

## domenica 17 maggio 2009

###
Theseus' ship and Banach-Tarski's paradox

1. I want to speak in this post about notion of "equivalence" between objects, and describe some paradoxes to which it can lead when combined to the notion of "decomposition".

The points a. and b. below are definitions. Point c. states the main problem we will consider.

a. When speaking of "equivalence", we always are in presence of an operation of objects in our universe to the from couples of objects to the truth values (we assume that they are just "true" and "false"): we take 2 objects, say A and B, and the "operation" gives as a result the truth value of the sentence

"A is equivalent to B".

The following basic properties will be (safely) assumed from now on:

- for any object A, "A is equivalent to A"=true

- if A, B are objects and if "A is equivalent to B"=true, then "B is equivalent to A"=true

- if A,B,C are objects and if "A is equivalent to B"=true, and "B is equivalent to C"=true, then "A is equivalent to C"=true

b. When we want to speak of a "decomposition" of an object, we are in presence of :

- a concept of "being a part of"

- a first object A, to which we associate a family F containing some objects B,C,..

The properties required for the family F are:

- A contains as a part of it each one of the elements of the family F

- there is no part of A which is not contained in some element of F (i.e. each object O which is a part of A is also part of some element of F)

- the elements of F are all disjoint (i.e. if we take an object B in F, then there does not exist a part of B which is also part of another object of F)

c. We want now to consider the interplay between decomposition and equivalence. Suppose that the following are true:

- F is a decomposition of A

- F' is a decomposition of A'

- each element of F is equivalent to an element of F'

In other words one breaks A and A' into pieces and observes that the pieces are all equivalent!

Question: Is it true that in such case A is equivalent to A'?

Answer: If you ever played with Lego, you know that this is certainly not the case.

Conclusion: One must introduce the concept of mutual position, at least.

Therefore we will also assume that

- there is a good definition of "relative position" for a family of objects

- the objects forming F are in the same relative position as the ones equivalent to them forming F' (i.e. you positioned the LEGO pieces in the same way as their equivalents)

Question: Is it true NOW that A is equivalent to A'?

Answer: Not yet. One has to be careful with the notion of "part".

This is explained very well through the following example

The Banach–Tarski paradox is a theorem in set theoretic geometry which states that a solid ball in 3-dimensional space can be split into several non-overlapping pieces, which can then be put back together in a different way to yield two identical copies of the original ball. The reassembly process involves only moving the pieces around and rotating them, without changing their shape. Actually the pieces building up the two copies, are also all equal (up to rotation and translation) and they are in the same mutual position!

However they are of a quite complicated shape, in the following sense: From geometry you know the volume of the easily constructable figures (cube, parallelipiped, sphere..). To further extend such notion to other objects, the best way is to state some properties that you want to hold for it, and then look at the greatest class of objects

- which contains the "easy" figures you started with

- on which there is an extension of the "volume" ("volume"=assignment of a number to each figure, such that the wanted properties continue to hold).

The properties for the volume which one wants are basically:

- the volume of a (possibly infinite) union of objects which are each disjoint of the others, is the sum of the volumes of the single elements osf such union

- the volume of an object A is the same as the volume of A' if A' is obtained from A by translation and/or rotation

Then there are so many different shapes in the 3D space, that the "volume" cannot be extended to all subsets of the space. The sets in which the two spheres above are divided are so complicated that a "volume" defined on the sphere cannot be "extended to them".

Conclusion: The definition of "part" should be restricted, otherwise we arrive at apparently contraddictory results.

In everyday life things are getting even more complicated (That's because we usually don't think too much about the concept of "equivalence", until somebody points out that it generates a paradox.) :

2. Theseus is remembered in Greek mythology as the slayer of the Minotaur. The ship in which he returned from Knossos was not in good condition, after all the time Theseus passed in the labyrinth.

As parts of the ship needed repair, it was rebuilt plank by plank. Suppose that, eventually, every plank was replaced; would it still have been the same ship?

Changing a single plank can never turn one ship into another. Even when every plank had been replaced, then, and no part of the original ship remained, it would still have been Theseus’ ship.

Suppose, though, that each of the planks removed from Theseus’ ship was restored, and that these planks were then recombined to once again form a ship. Would this have been Theseus’ ship? Again, the answer is yes: this ship would have had precisely the same parts as Theseus’ ship, arranged in precisely the same way.

If this happened, then, then it would seem that Theseus had returned from Knossos in two ships.

Question: What means "being equivalent to Theseus' ship"?

3. Another example: Also our cells are continuously regenerated. The atoms of which we are made are never the same, still we feel like we have always the same identity. This however causes no paradox, just because nobody can take our dead tissues, "restore them", and make other copies of ourselves.

## venerdì 17 aprile 2009

###
wikipedia marketing and advertising 2

## amici

## ...

## ???

Plato was discoursing on his theory of ideas and, pointing to the cups on the table before him, said while there are many cups in the world, there is only one `idea' of a cup, and this cupness precedes the existence of all particular cups.

"I can see the cup on the table," interupted Diogenes, "but I can't see the `cupness'".

"That's because you have the eyes to see the cup," said Plato, "but", tapping his head with his forefinger, "you don't have the intellect with which to comprehend `cupness'."

Diogenes walked up to the table, examined a cup and, looking inside, asked, "Is it empty?"

Plato nodded.

"Where is the `emptiness' which procedes this empty cup?" asked Diogenes.

Plato allowed himself a few moments to collect his thoughts, but Diogenes reached over and, tapping Plato's head with his finger, said "I think you will find here is the `emptiness'."

"I can see the cup on the table," interupted Diogenes, "but I can't see the `cupness'".

"That's because you have the eyes to see the cup," said Plato, "but", tapping his head with his forefinger, "you don't have the intellect with which to comprehend `cupness'."

Diogenes walked up to the table, examined a cup and, looking inside, asked, "Is it empty?"

Plato nodded.

"Where is the `emptiness' which procedes this empty cup?" asked Diogenes.

Plato allowed himself a few moments to collect his thoughts, but Diogenes reached over and, tapping Plato's head with his finger, said "I think you will find here is the `emptiness'."

If you have time, try to do the following: you need only a computer screen that is easy to rotate of 90°, and you need to have a mouse (does not work with a touchpad).

So, put your mouse on the lower part of the screen, then rotate the screen, and

1) try to move the mouse in order to reach some point on the screen (e.g. the button to minimize this window).

*

The sensation you prove the first time is awkward, since if you move the mouse horizontally, the arrow on the screen will move vertically, completely disorienting you.

*

2) Now, try to reach the same point in the following way:

just move the mouse "shaking your hand slightly", while keeping concentrated the mouse and on moving the mouse towards that point.

*

You should notice that in this case the shaking motion gradually moves you to the wanted point, with much less effort than when you tried directly.

*

---------------------

I guess the mechanism explaining this is behavior is like follows: when you want to touch some precise point with your finger, the brain has some system to detect if your hand reaches the target in a subconscious way, computing the tiny deviations needed to reach it exactly. This probably is a process of "trial and error", i.e. the brain favours the movements that tend to the target.

Now, by shaking your hand, you eliminate the conscious part of your movement, and let free the inconscious error-minimizing corrections "do the work for you".

QUESTION: Does that make any sense? :)

==============

*How this experiment came to my mind: I recently was reading a PDF file directly from the laptop screen, and I had the idea to rotate the PDF and the laptop, in order to be able to see a whole page..

So, put your mouse on the lower part of the screen, then rotate the screen, and

1) try to move the mouse in order to reach some point on the screen (e.g. the button to minimize this window).

*

The sensation you prove the first time is awkward, since if you move the mouse horizontally, the arrow on the screen will move vertically, completely disorienting you.

*

2) Now, try to reach the same point in the following way:

just move the mouse "shaking your hand slightly", while keeping concentrated the mouse and on moving the mouse towards that point.

*

You should notice that in this case the shaking motion gradually moves you to the wanted point, with much less effort than when you tried directly.

*

---------------------

I guess the mechanism explaining this is behavior is like follows: when you want to touch some precise point with your finger, the brain has some system to detect if your hand reaches the target in a subconscious way, computing the tiny deviations needed to reach it exactly. This probably is a process of "trial and error", i.e. the brain favours the movements that tend to the target.

Now, by shaking your hand, you eliminate the conscious part of your movement, and let free the inconscious error-minimizing corrections "do the work for you".

QUESTION: Does that make any sense? :)

==============

*How this experiment came to my mind: I recently was reading a PDF file directly from the laptop screen, and I had the idea to rotate the PDF and the laptop, in order to be able to see a whole page..

What do you think of the clouds?

are they the image of softness? lightness? dream? a promise of rain? the shelter of stars? a place for the eye to rest from the infinity of the sky?

Are they the sheath of thunder? or are they wind made visible? or just a metaphor of nature's unending clash against itself?

Should you look at them, breathing the majesty of the elements, or concentrate on the earth below, silently sweeped by their shadows? will you notice their passing, just by the enshadowment of the man next to you? will you ever pay attention the tiny clouds running on the back of his eyes? or didn't you notice even that he was staring at you?

His name is Aristophanes.

are they the image of softness? lightness? dream? a promise of rain? the shelter of stars? a place for the eye to rest from the infinity of the sky?

Are they the sheath of thunder? or are they wind made visible? or just a metaphor of nature's unending clash against itself?

Should you look at them, breathing the majesty of the elements, or concentrate on the earth below, silently sweeped by their shadows? will you notice their passing, just by the enshadowment of the man next to you? will you ever pay attention the tiny clouds running on the back of his eyes? or didn't you notice even that he was staring at you?

His name is Aristophanes.

1. I want to speak in this post about notion of "equivalence" between objects, and describe some paradoxes to which it can lead when combined to the notion of "decomposition".

The points a. and b. below are definitions. Point c. states the main problem we will consider.

a. When speaking of "equivalence", we always are in presence of an operation of objects in our universe to the from couples of objects to the truth values (we assume that they are just "true" and "false"): we take 2 objects, say A and B, and the "operation" gives as a result the truth value of the sentence

"A is equivalent to B".

The following basic properties will be (safely) assumed from now on:

- for any object A, "A is equivalent to A"=true

- if A, B are objects and if "A is equivalent to B"=true, then "B is equivalent to A"=true

- if A,B,C are objects and if "A is equivalent to B"=true, and "B is equivalent to C"=true, then "A is equivalent to C"=true

b. When we want to speak of a "decomposition" of an object, we are in presence of :

- a concept of "being a part of"

- a first object A, to which we associate a family F containing some objects B,C,..

The properties required for the family F are:

- A contains as a part of it each one of the elements of the family F

- there is no part of A which is not contained in some element of F (i.e. each object O which is a part of A is also part of some element of F)

- the elements of F are all disjoint (i.e. if we take an object B in F, then there does not exist a part of B which is also part of another object of F)

c. We want now to consider the interplay between decomposition and equivalence. Suppose that the following are true:

- F is a decomposition of A

- F' is a decomposition of A'

- each element of F is equivalent to an element of F'

In other words one breaks A and A' into pieces and observes that the pieces are all equivalent!

Question: Is it true that in such case A is equivalent to A'?

Answer: If you ever played with Lego, you know that this is certainly not the case.

Conclusion: One must introduce the concept of mutual position, at least.

Therefore we will also assume that

- there is a good definition of "relative position" for a family of objects

- the objects forming F are in the same relative position as the ones equivalent to them forming F' (i.e. you positioned the LEGO pieces in the same way as their equivalents)

Question: Is it true NOW that A is equivalent to A'?

Answer: Not yet. One has to be careful with the notion of "part".

This is explained very well through the following example

The Banach–Tarski paradox is a theorem in set theoretic geometry which states that a solid ball in 3-dimensional space can be split into several non-overlapping pieces, which can then be put back together in a different way to yield two identical copies of the original ball. The reassembly process involves only moving the pieces around and rotating them, without changing their shape. Actually the pieces building up the two copies, are also all equal (up to rotation and translation) and they are in the same mutual position!

However they are of a quite complicated shape, in the following sense: From geometry you know the volume of the easily constructable figures (cube, parallelipiped, sphere..). To further extend such notion to other objects, the best way is to state some properties that you want to hold for it, and then look at the greatest class of objects

- which contains the "easy" figures you started with

- on which there is an extension of the "volume" ("volume"=assignment of a number to each figure, such that the wanted properties continue to hold).

The properties for the volume which one wants are basically:

- the volume of a (possibly infinite) union of objects which are each disjoint of the others, is the sum of the volumes of the single elements osf such union

- the volume of an object A is the same as the volume of A' if A' is obtained from A by translation and/or rotation

Then there are so many different shapes in the 3D space, that the "volume" cannot be extended to all subsets of the space. The sets in which the two spheres above are divided are so complicated that a "volume" defined on the sphere cannot be "extended to them".

Conclusion: The definition of "part" should be restricted, otherwise we arrive at apparently contraddictory results.

In everyday life things are getting even more complicated (That's because we usually don't think too much about the concept of "equivalence", until somebody points out that it generates a paradox.) :

2. Theseus is remembered in Greek mythology as the slayer of the Minotaur. The ship in which he returned from Knossos was not in good condition, after all the time Theseus passed in the labyrinth.

As parts of the ship needed repair, it was rebuilt plank by plank. Suppose that, eventually, every plank was replaced; would it still have been the same ship?

Changing a single plank can never turn one ship into another. Even when every plank had been replaced, then, and no part of the original ship remained, it would still have been Theseus’ ship.

Suppose, though, that each of the planks removed from Theseus’ ship was restored, and that these planks were then recombined to once again form a ship. Would this have been Theseus’ ship? Again, the answer is yes: this ship would have had precisely the same parts as Theseus’ ship, arranged in precisely the same way.

If this happened, then, then it would seem that Theseus had returned from Knossos in two ships.

Question: What means "being equivalent to Theseus' ship"?

3. Another example: Also our cells are continuously regenerated. The atoms of which we are made are never the same, still we feel like we have always the same identity. This however causes no paradox, just because nobody can take our dead tissues, "restore them", and make other copies of ourselves.

http://en.wikipedia.org/wiki/Incomplete_comparison

http://en.wikipedia.org/wiki/Inconsistent_comparison

http://en.wikipedia.org/wiki/Roll-in

http://en.wikipedia.org/wiki/Teaser_rate

http://en.wikipedia.org/wiki/Transfer_(propaganda)

http://en.wikipedia.org/wiki/Trojan_horse_(business)

http://en.wikipedia.org/wiki/Influence_Science_and_Practice

http://en.wikipedia.org/wiki/Reciprocity_(social_psychology)

http://en.wikipedia.org/wiki/List_of_cognitive_biases

http://en.wikipedia.org/wiki/Inconsistent_comparison

http://en.wikipedia.org/wiki/Roll-in

http://en.wikipedia.org/wiki/Teaser_rate

http://en.wikipedia.org/wiki/Transfer_(propaganda)

http://en.wikipedia.org/wiki/Trojan_horse_(business)

http://en.wikipedia.org/wiki/Influence_Science_and_Practice

http://en.wikipedia.org/wiki/Reciprocity_(social_psychology)

http://en.wikipedia.org/wiki/List_of_cognitive_biases

Iscriviti a:
Post (Atom)

- 12/06 - 12/13 (1)
- 08/09 - 08/16 (1)
- 07/05 - 07/12 (1)
- 06/07 - 06/14 (1)
- 05/17 - 05/24 (2)
- 04/12 - 04/19 (3)
- 04/05 - 04/12 (1)
- 03/22 - 03/29 (1)
- 03/15 - 03/22 (3)
- 01/04 - 01/11 (1)
- 12/07 - 12/14 (1)
- 11/16 - 11/23 (1)
- 11/02 - 11/09 (2)
- 11/25 - 12/02 (1)
- 06/24 - 07/01 (1)
- 05/27 - 06/03 (1)
- 05/20 - 05/27 (1)
- 01/14 - 01/21 (1)

- ____________________
- Eg veit eit sted oppe i mellan åsen/ Kor måsene mjuk og tre å kaster skugge